Polarized tip-enhanced Raman spectroscopy at liquid He temperature in ultrahigh vacuum using an off-axis parabolic mirror

Author:

Peis L.123ORCID,He G.1ORCID,Jost D.12ORCID,Rager G.12ORCID,Hackl R.123ORCID

Affiliation:

1. Walther Meissner Institut, Bayerische Akademie der Wissenschaften 1 , 85748 Garching, Germany

2. School of Natural Sciences, Technische Universität München 2 , 85748 Garching, Germany

3. IFW Dresden 3 , Helmholtzstrasse 20, 01069 Dresden, Germany

Abstract

Tip-enhanced Raman spectroscopy (TERS) combines inelastic light scattering well below the diffraction limit down to the nanometer range and scanning probe microscopy and, possibly, spectroscopy. In this way, topographic and spectroscopic as well as single- and two-particle information may simultaneously be collected. While single molecules can now be studied successfully, bulk solids are still not meaningfully accessible. It is the purpose of the work presented here to outline approaches toward this objective. We describe a home-built, liquid helium cooled, ultrahigh vacuum TERS. The setup is based on a scanning tunneling microscope and, as an innovation, an off-axis parabolic mirror having a high numerical aperture of ∼0.85 and a large working distance. The system is equipped with a fast load-lock chamber, a chamber for the in situ preparation of tips, substrates, and samples, and a TERS chamber. Base pressure and temperature in the TERS chamber were ∼3 × 10−11 mbar and 15 K, respectively. Polarization dependent tip-enhanced Raman spectra of the vibration modes of carbon nanotubes were successfully acquired at cryogenic temperature. The new features described here including very low pressure and temperature and the external access to the light polarizations, thus the selection rules, may pave the way toward the investigation of bulk and surface materials.

Funder

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3