Progress in in situ x-ray imaging of welding process

Author:

Zhang Xiaolin12ORCID,Tang Zijue12,Wu Yi123,Devoino Oleg4,Wang Haowei123,Wang Hongze123ORCID

Affiliation:

1. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. Institute of Alumics Materials, Shanghai Jiao Tong University (Anhui), Huaibei 235000, China

4. Faculty of Mechanical Engineering, Belarusian National Technical University, Minsk, Belarus

Abstract

Welding has been widely used in industry for hundreds of years, and pursuing higher weld quality requires a better understanding of the welding process. The x-ray imaging technique is a powerful tool to in situ observe the inner characteristics of the melt pool in the welding process. Here, current progress in in situ x-ray imaging of the welding process is concluded, including the experiments based on the laboratory-based single x-ray imaging system, the laboratory-based double x-ray imaging system, and the synchrotron radiation tomography system. The corresponding experimental results with the in situ x-ray imaging technique about the formation and evolution of the keyhole, melt pool, pore, solidification crack, etc., have been introduced. A new understanding of welding based on the current progress in in situ x-ray imaging of additive manufacturing is concluded. In addition, the future development trend of applying x-ray imaging technology in the field of monitoring the welding process is proposed.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Natural Science Foundation of Shanghai

China Postdoctoral Science Foundation

Major Science and Technology Project of Huaibei

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3