Introducing the embedded random phase approximation: H2 dissociative adsorption on Cu(111) as an exemplar

Author:

Wei Ziyang1ORCID,Martirez John Mark P.2ORCID,Carter Emily A.123ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Princeton University 1 , Princeton, New Jersey 08544-5263, USA

2. Applied Materials and Sustainability Sciences, Princeton Plasma Physics Laboratory 2 , Princeton, New Jersey 08540-6655, USA

3. Andlinger Center for Energy and the Environment and Program in Applied and Computational Mathematics, Princeton University 3 , Princeton, New Jersey 08544, USA

Abstract

The random phase approximation (RPA) as a means of treating electron correlation recently has been shown to outperform standard density functional theory (DFT) approximations in a variety of cases. However, the computational cost of the RPA is substantially more than DFT, especially when aiming to study extended surfaces. Properly accounting for sufficient surface ensemble size, Brillouin zone sampling, and vacuum separation of periodic images in standard periodic-planewave-based DFT code raises the cost to achieve converged results. Here, we show that sub-system embedding schemes enable use of the RPA for modeling heterogeneous reactions at reduced computational cost. We explore two different embedded RPA (emb-RPA) approaches, periodic emb-RPA and cluster emb-RPA. We use the (experimentally and theoretically) well-studied H2 dissociative adsorption on Cu(111) as our exemplar, and first perform full periodic RPA calculations as a benchmark. The full RPA results match well the semi-empirical barrier fit to experimental observables and others derived from high-level computations, e.g., from recent embedded n-electron valence second order perturbation theory [Zhao et al., J. Chem. Theory Comput. 16(11), 7078–7088 (2020)] and quantum Monte Carlo [Doblhoff-Dier et al., J. Chem. Theory Comput. 13(7), 3208–3219 (2017)] simulations. Among the two emb-RPA approaches tested, the cluster emb-RPA accurately reproduces the energy profile (maximum error of 50 meV along the reaction pathway) while reducing the computational cost by approximately two orders of magnitude. We therefore expect that the embedded cluster approach will enable wider RPA implementation in heterogeneous catalysis.

Funder

Basic Energy Sciences

Fusion Energy Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3