Correlation between properties of various carbon defects and electrochemical charge carrier storage mechanisms for use in Li- and Na-based rechargeable batteries

Author:

Ito Yuta1ORCID,Ni Jiayuan1ORCID,Lee Changhee1ORCID,Gao Xinli1,Miyahara Yuto1ORCID,Miyazaki Kohei1ORCID,Abe Takeshi1ORCID

Affiliation:

1. Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan

Abstract

With the growing interest in promising energy sources for high-energy-demand devices, the development of materials for use in rechargeable batteries based on electrochemical charge carrier storage, such as Li and Na, has attracted intensive attention. Among them, carbon materials (e.g., graphene, graphite, and disordered carbons) have been extensively used as electrode materials for battery systems because of their critical advantages, namely, relatively good charge carrier storage capability, low cost, abundant resources, and simple manufacturing process. In particular, various types of defects are indispensably formed in the carbon structure during the manufacturing processes, which significantly influence their electrochemical charge carrier storage mechanisms and thus determine the electrochemical properties of the carbon-based rechargeable battery systems. This comprehensive review summarizes the correlation between the fundamental properties of carbon defects and electrochemical Li and Na storage mechanisms for Li- and Na-based rechargeable batteries, representative cations using battery systems, with a special focus on atomic-scale science and technology, which have a notable role in investigating and understanding the interaction between the defect phases and charge carriers in carbon structures. First, various carbon defects are categorized for the purpose of this work; then, computational/experimental methods for analyzing them and their critical properties (especially electronic structure) are introduced because identifying defect types is critical. Next, the roles and influences of carbon defects on electrochemical charge carrier storage mechanisms (especially adsorption and intercalation [insertion], diffusion, and formation of metal clusters) are described for Li- and Na-based rechargeable batteries. This study focuses on the physicochemical and electrochemical properties, which are key characteristics of carbon defects that determine their optimal utilization in rechargeable battery systems.

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3