Instability of a salt jet emitted from a point source in an external electric field

Author:

Amiroudine S.1ORCID,Demekhin E. A.234ORCID,Ganchenko G. S.3ORCID,Shelistov V. S.3,Frants E. A.23ORCID

Affiliation:

1. Institut de Mécanique et d'Ingénierie, UMR CNRS 5295, University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France

2. Department of Mathematics and Computer Science, Financial University under the Government of the Russian Federation, Moscow 125167, Russian Federation

3. Laboratory of Micro- and Nanoscale Electro- and Hydrodynamics, Financial University under the Government of the Russian Federation, Moscow 125167, Russian Federation

4. Laboratory of General Aeromechanics, Institute of Mechanics, Moscow State University, Moscow 119192, Russian Federation

Abstract

The objective in the present work is to consider a simple example of instability of a conducting self-similar micro jet in the external electric field, which represents a prototype of some microfluidic instabilities. Salt from a point source is emitted into its own aquatic solution, which is subject to an external uniform velocity field together with an electrostatic field, and is convected downstream and diffused. The flow is considered in microscales so that, in contrast to the classical jets, the Reynolds numbers are practically zero, but the Péclet numbers are large. The parameters are found at which such a microjet is unstable. Along with the linear stability analysis, we have fulfilled the numerical simulations of the full nonlinear system of equations. The numerical simulation qualitatively confirmed the results of the linear stability and showed that this instability visually reminds classical instabilities of free jets and wakes.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3