Novel first-principles insights into graphene fluorination

Author:

Malakoutikhah Tahereh1,Hashemifar S. Javad1ORCID,Alaei Mojtaba1

Affiliation:

1. Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

Fluorination of graphene sheets with xenon difluoride leads to the formation of the widest bandgap Gr derivative, namely, fluorographene. Accurate experimental observations distinguish two stages of mechanism in the fluorination procedure: the half-fluorination stage, wherein one side of the Gr sheet is rapidly fluorinated, and the full-fluorination stage, involving much slower fluorination of the opposite side of the sheet [R. J. Kashtiban et al., Nat. Commun. 5, 5902 (2014)]. Here, we perform comprehensive density functional calculations to illustrate accurate microscopic insights into the much slower rate of the full-fluorination stage compared with the half-fluorination one. The calculated minimum energy paths for the half- and full-fluorination processes demonstrate much enhanced fluorine adsorption after the half-fluorination stage, which sounds inconsistent with the experimental picture. This ambiguity is explained in terms of significant chemical activation of the graphene sheet after half-fluorination, which remarkably facilitates the formation of chemical contaminants in the system and, thus, substantially slows down the full-fluorination procedure. After considering the binding energy and durability of the relevant chemical species, including hydrogen, oxygen, and nitrogen molecules and xenon atom, it is argued that oxygen–fluorine ligands are the most likely chemical contaminants opposing the complete fluorination of a graphene sheet. Then, we propose an oxygen desorption mechanism to carefully explain the much enhanced rate of the full-fluorination procedure at elevated temperatures. The potential photocatalytic application of the pristine and defected samples in water splitting and carbon dioxide reduction reactions is also discussed.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3