An efficient and flexible approach for computing rovibrational polaritons from first principles

Author:

Szidarovszky Tamás1ORCID

Affiliation:

1. Institute of Chemistry, ELTE Eötvös Loránd University , Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

Abstract

A theoretical framework is presented for the computation of the rovibrational polaritonic states of a molecule in a lossless infrared (IR) microcavity. In the proposed approach, the quantum treatment of the rotational and vibrational motions of the molecule can be formulated using arbitrary approximations. The cavity-induced changes in electronic structure are treated perturbatively, which allows using the existing polished tools of standard quantum chemistry for determining electronic molecular properties. As a case study, the rovibrational polaritons and related thermodynamic properties of H2O in an IR microcavity are computed for varying cavity parameters, applying various approximations to describe the molecular degrees of freedom. The self-dipole interaction is significant for nearly all light–matter coupling strengths investigated, and the molecular polarizability proved important for the correct qualitative behavior of the energy level shifts induced by the cavity. On the other hand, the magnitude of polarization remains small, justifying the perturbative approach for the cavity-induced changes in electronic structure. Comparing results obtained using a high-accuracy variational molecular model with those obtained utilizing the rigid rotor and harmonic oscillator approximations revealed that as long as the rovibrational model is appropriate for describing the field-free molecule, the computed rovibropolaritonic properties can be expected to be accurate as well. Strong light–matter coupling between the radiation mode of an IR cavity and the rovibrational states of H2O leads to minor changes in the thermodynamic properties of the system, and these changes seem to be dominated by non-resonant interactions between the quantum light and matter.

Funder

National Research, Development and Innovation Office

Magyar Tudományos Akadémia

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3