Nonlinear trajectory estimation using extended state-space recursive least squares

Author:

Abid Anam1ORCID

Affiliation:

1. Department of Mechatronics Engineering, University of Engineering and Technology , Peshawar, Pakistan

Abstract

In a variety of filtering applications including target tracking, global positioning systems, and autonomous robots, the nonlinear nature of the system model makes estimation tasks challenging. This study presents an extended state-space recursive least squares (ESSRLS) filter for nonlinear trajectory estimation. The paper focuses on ESSRLS filter derivation for non-autonomous systems and investigates its performance against the extended Kalman filter and unscented Kalman filter for maneuvering aircraft trajectory estimation applications. The major accomplishment of the proposed approach is nonlinear filtering, independent of a priori information about noise statistics and the provision of the tuning parameter (forgetting factor). This makes the ESSRLS a more suited candidate for practical nonlinear filtering applications. The simulation results show that in the presence of model uncertainties, data outages (occlusion), and large initial condition deviations, the proposed method gives superior estimation performance as compared to the state-of-the-art.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3