Design of spinning disk atomization equipment for synthesis of drug-loaded microparticles

Author:

Sreejith C.1ORCID,Jayaseelan Kiruthika1ORCID,Thomas Shijoy1ORCID,Rengaswamy Raghunathan1ORCID,Basavaraj Madivala G.1ORCID

Affiliation:

1. Indian Institute of Technology Madras , Chennai 600 036, India

Abstract

The synthesis of drug-loaded microparticles with precise control over size distribution and shape is crucial for achieving desired drug distribution in microparticles and tuning drug release profiles. Common large-scale production techniques produce microparticles with a broad particle size distribution and require challenging operating conditions. Recent methods employing microfluidics have enabled the production of microparticles with a uniform size distribution. Still, these methods are limited to low and moderate production rates and can handle fluids with a limited range of physicochemical properties. In this study, we couple the spinning disk atomization (SDA) technique for microdroplet production with a precipitation method to generate drug-loaded polymeric microparticles with a narrow size distribution. The design criteria and fabrication of equipment with a non-contact seal system that integrates spinning disk atomization and precipitation methods for conducting laboratory experiments involving volatile hydrocarbons while ensuring operational and personnel safety are discussed. The production of itraconazole drug-loaded microparticles using the SDA setup that considers the system's operation, maintenance, and safety aspects are discussed, and the system's efficiency is evaluated through material balance. This laboratory equipment is capable of producing drug-loaded microparticles with a narrow size distribution under moderate operating conditions and can be scaled up suitably to meet high production requirements. The applications of this equipment can be explored in various fields, such as the production of drug particles, conversion of waste polymers into microparticles, and microencapsulation of food ingredients.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3