Removing non-resonant background of CARS signal with generative adversarial network

Author:

Luo Ziyi1ORCID,Xu Xiangcong1ORCID,Lin Danying1ORCID,Qu Junle12ORCID,Lin Fangrui1,Li Jia1ORCID

Affiliation:

1. State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University 1 , Shenzhen 518060, China

2. School of Medical Engineering and Technology, Xinjiang Medical University 2 , Urumqi 830054, China

Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy requires the removal of non-resonant background (NRB) to ensure spectral accuracy and quality. This study introduces a deep-learning-based algorithm that leverages its enhanced capability for NRB removal and spectra retrieval. A generative adversarial network is trained using simulated noisy CARS data, enabling straightforward analysis of real CARS spectra obtained from pork belly and living mice brains. The results highlight the algorithm's ability to accurately extract vibrational information in the CH region. Importantly, this method eliminates the need for additional experimental measurements or extensive data preprocessing or postprocessing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Key Laboratory of Photonics and Biophotonics

Shenzhen Science and Technology Innovation Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3