Indentation response of model oxide dispersion strengthening alloys after ion irradiation up to 700 °C

Author:

Robertson C.1ORCID,Mathon M. H.1ORCID,Panigrahi B. K.2,Amirthapandian S.2,Sojak S.3,Santra S.4ORCID

Affiliation:

1. CEA, Service de Recherches Métallurgiques Appliquées, Université Paris-Saclay, Gif-sur-Yvette 91191, France

2. Indira Gandhi Centre for Atomic Research, MSG, Kalpakkam 603 102, Tamil Nadu, India

3. Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia

4. Characterisation Lab, Quality Assurance, Nuclear Fuel Complex, HBNI, Hyderabad 500 062, India

Abstract

This paper presents an experimental investigation of irradiation-induced evolutions in three different oxide dispersion strengthening (ODS) alloys. High-dose, dual beam Ni–He ion irradiations are carried out up to 700 °C. The significant dose-dependent changes in the ODS particle size and number density are documented and interpreted in terms of specific point defect transport mechanisms, from small angle neutron scattering, TEM, and pulsed low-energy positron system measurements combined. The corresponding micro-mechanical changes in the alloys are evaluated based on the indentation response, which is, in turn, interpreted in terms of related, sub-grain plasticity mechanisms. The room temperature tests (without dwell time) reveal that the microscale work-hardening rate increases with decreasing the particle number density and pronounced strain localization effect. The elevated temperature tests (up to 600 °C, with dwell time) show that the indentation creep compliance is mostly temperature-independent after irradiation up to 25 dpa at Tirr = 500 °C and markedly temperature-dependent, after irradiation beyond 40 dpa at Tirr = 600 °C. This effect is ascribed to particular creep mechanisms associated with indent-induced plasticity, i.e., high stress and high dislocation density conditions.

Funder

JPNM EERA

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3