Highly cyclable voltage control of magnetism in cobalt ferrite nanopillars for memory and neuromorphic applications

Author:

de h-Óra Muireann1ORCID,Nicolenco Aliona23,Monalisha P.2ORCID,Maity Tuhin4,Zhu Bonan5ORCID,Lee Shinbuhm16,Sun Zhuotong1,Sort Jordi27ORCID,MacManus-Driscoll Judith1ORCID

Affiliation:

1. Department of Materials Science and Metallurgy, University of Cambridge 1 , CB3 OFS Cambridge, United Kingdom

2. Departament de Física, Universitat Autònoma de Barcelona 2 , 08193 Bellaterra, Spain

3. Cidetec, Gipuzkoa Science and Technology Park 3 , P.O. Miramon/Miramon Pasealekua, 196 20014 Donostia, San Sebastián, Spain

4. Indian Institute of Science Education and Research Thiruvananthapuram 4 , Thiruvananthapuram, Kerala 695551, India

5. Department of Chemistry, University College London 5 , 20 Gordon St., London WC1H 0AJ, United Kingdom

6. Department of Physics and Chemistry, DGIST 6 , Daegu 42988, South Korea

7. Institució Catalana de Recerca i Estudis Avançats 7 , Pg. Lluís Companys 23, 08010 Barcelona, Spain

Abstract

Tuning the properties of magnetic materials by voltage-driven ion migration (magneto-ionics) gives potential for energy-efficient, non-volatile magnetic memory and neuromorphic computing. Here, we report large changes in the magnetic moment at saturation (mS) and coercivity (HC), of 34% and 78%, respectively, in an array of CoFe2O4 (CFO) epitaxial nanopillar electrodes (∼50 nm diameter, ∼70 nm pitch, and 90 nm in height) with an applied voltage of −10 V in a liquid electrolyte cell. Furthermore, a magneto-ionic response faster than 3 s and endurance >2000 cycles are demonstrated. The response time is faster than for other magneto-ionic films of similar thickness, and cyclability is around two orders of magnitude higher than for other oxygen magneto-ionic systems. Using a range of characterization techniques, magnetic switching is shown to arise from the modulation of oxygen content in the CFO. Also, the highly cyclable, self-assembled nanopillar structures were demonstrated to emulate various synaptic behaviors, exhibiting non-volatile, multilevel magnetic states for analog computing and high-density storage. Overall, CFO nanopillar arrays offer the potential to be used as interconnected synapses for advanced neuromorphic computing applications.

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3