Analog of a Laplace–Runge–Lenz vector for particle orbits (time-like geodesics) in Schwarzschild spacetime

Author:

Anco Stephen C.1ORCID,Fazio Jordan A.2ORCID

Affiliation:

1. Department of Mathematics and Statistics Brock University 1 , St. Catharines, Ontario L2S3A1, Canada

2. Department of Physics, University of Toronto 2 , Toronto, Ontario M5S1A7, Canada

Abstract

In Schwarzschild spacetime, time-like geodesic equations, which define particle orbits, have a well-known formulation as a dynamical system in coordinates adapted to the time-like hypersurface containing the geodesic. For equatorial geodesics, the resulting dynamical system is shown to possess a conserved angular quantity and two conserved temporal quantities, whose properties and physical meaning are analogs of the conserved Laplace–Runge–Lenz vector, and its variant known as Hamilton’s vector, in Newtonian gravity. When a particle orbit is projected into the spatial equatorial plane, the angular quantity yields the coordinate angle at which the orbit has either a turning point (where the radial velocity is zero) or a centripetal point (where the radial acceleration is zero). This is the same property as the angle of the respective Laplace–Runge–Lenz and Hamilton vectors in the plane of motion in Newtonian gravity. The temporal quantities yield the coordinate time and the proper time at which those points are reached on the orbit. In general, for orbits that have a single turning point, the three quantities are globally constant, and for orbits that possess more than one turning point, the temporal quantities are just locally constant as they jump at every successive turning point, while the angular quantity similarly jumps only if an orbit is precessing. This is analogous to the properties of a generalized Laplace–Runge–Lenz vector and generalized Hamilton vector which are known to exist for precessing orbits in post-Newtonian gravity. The angular conserved quantity is used to define a direct analog of these vectors at spatial infinity.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference31 articles.

1. Theory of the relativistic trajectories in a gravitational field of Schwarzschild;Jpn. J. Astron. Geophys.,1931

2. The gravity field of a particle;Proc. R. Soc. London, Ser. A,1959

3. The gravity field of a particle II;Darwin;Proc. R. Soc. London, Ser. A,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3