Numerical investigation of the segregation of turbulent emulsions

Author:

Trummler T.1ORCID,Begemann A.1ORCID,Trautner E.1ORCID,Klein M.1ORCID

Affiliation:

1. Institute of Applied Mathematics and Scientific Computing, Bundeswehr University Munich Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

Abstract

We study the segregation of emulsions in decaying turbulence using direct numerical simulations in combination with the volume of fluid method. To this end, we generate emulsions in forced homogeneous isotropic turbulence and then turn the forcing off and activate the gravitational acceleration. This allows us to study the segregation process in decaying turbulence and under gravity. We consider non-iso-density emulsions, where the dispersed phase is the lighter one. The segregation process is driven by both the minimization of the potential energy achieved by the sinking of the heavier phase as well as the minimization of the surface energy achieved by coalescence. To study these two processes and their impacts on the segregation progress in detail, we consider different buoyancy forces and surface tension coefficients in our investigation, resulting in five different configurations. The surface tension coefficient also alters the droplet size distribution of the emulsion. Using the three-dimensional simulation results and the monitored data, we analyze the driving mechanisms and their impact on the segregation progress in detail. We propose a dimensionless number that reflects the energy release dominating the segregation. Moreover, we evaluate the time required for the rise of the lighter phase and study correlations with the varied parameters: gravitational acceleration and surface tension coefficient.

Funder

Digitalization and Technology Research Center of the Bundeswehr

Gauss Centre for Supercomputing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3