Investigating strengthening and softening mechanisms in Al/Ni multilayers via molecular dynamics simulations of uniaxial compression

Author:

Schwarz Fabian1ORCID,Spolenak Ralph1ORCID

Affiliation:

1. Laboratory for Nanometallurgy, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, Zürich CH-8093, Switzerland

Abstract

Due to their nanoscale features, nanometric multilayers can have a large variation in properties for varying bilayer heights. While the hardening at small feature sizes and the consequent softening at even smaller feature sizes have been observed for decades, the underlying mechanisms are still under debate. In this study, molecular dynamics uniaxial compression simulations are employed to study the mechanical properties of Al/Ni multilayers for bilayer heights h from 100 nm down to 5 nm. The effect of the microstructure on Young’s modulus and the yield strength was investigated. Furthermore, the mechanical properties of equiatomic and equivolumetric multilayers were compared. A comparison with experimental results from the literature showed good agreement. Both the hardening at intermediate bilayer heights as well as the softening at very small bilayer heights were observed. The results are discussed in the context of possible hardening and softening mechanisms. While the Hall–Petch effect with a h−1/2 scaling is not contradicted, it is shown that, although the underlying mechanisms are different, both the hardening as well as the softening are based on a general size effect with a scaling of ln(h)/h.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3