Investigating the electric field distribution in the human brain model induced by a high focality transcranial magnetic coil

Author:

Wang Yong123ORCID,Yang Yonghui23,Qi Yihao23,Gong Enzhong1ORCID,Zhang Haiyang123,Shi Liantao1ORCID,Li Zhengguo1ORCID

Affiliation:

1. Institute for Carbon-Neutral-Technology, Shenzhen Polytechnic University 1 , Shenzhen 518055, China

2. School of Electronics and Information Engineering 2 , Anshan 114051, China

3. , University of Science and Technology Liaoning 2 , Anshan 114051, China

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique for treating various neurological disorders. The geometry of the TMS coil determines the focality, stimulation field strength, and stimulation depth of the induced electric field. In this paper, we introduce a novel coil, named the eccentric folding coil (EFC). We used Sim4Life, a three-dimensional human tissue medical electromagnetic simulation software, and the brain models of the subjects from the population head model repository to conduct finite element simulations of the eccentric folding coil, circular coil, and figure-eight coil, implying that the largest EFC has a focal area of 19.5 cm2 less than the smallest circular coil, and the EFC of any size has a smaller focal area than the figure-8 coil of the same size. Furthermore, we stimulated the model from three directions with the coil and measured the electric field responses of the model, confirming that stimulation varied in different directions. Additionally, we applied EFC to four representative human models and found that the electric field in different subjects’ brains differed by 3.03 mm in stimulation depth and 12.9 cm2 in focal area, suggesting that personalized human head modeling and electromagnetic analysis are essential for TMS treatment. In the future, we will explore using different types of TMS devices for patients with different conditions to achieve more precise and customized treatment.

Funder

Science and Technology Planning Project of Shenzen Municipality

Shenzhen International Cooperation Research Project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3