Experimental investigation of pressure fluctuation in a mixed-flow pump under gas–liquid two-phase flow conditions

Author:

Luo Xing-QiORCID,Ge Zhen-GuoORCID,Feng Jian-JunORCID,Zhu Guo-JunORCID,Li Chen-haoORCID,He Deng-HuiORCID

Abstract

The flow in mixed-flow pumps under gas–liquid operating conditions is complex, involving special phenomena such as secondary flow and bubble breakup and coalescence. As a result, its pressure fluctuation characteristic is far different from that under pure water conditions. In this work, the energy performance, pressure fluctuation characteristics, and flow pattern under different inlet gas volume fractions (IGVFs) are studied through a visualization test in a mixed-flow pump. The air pocket forms easily close to the suction side of diffuser vanes, where two pressure fluctuation monitoring points are set up. The pressure increment decreases continuously when the IGVF increases, and the flow pattern shows a transition from bubble, condensed bubble, and air pocket to separated flow. Moreover, the pressure fluctuation amplitude and peak-to-peak values increase. The main frequency under different IGVFs is maintained as the blade passing frequency. When the IGVF increases to 15%, the peak-to-peak amplitude at P1 reaches the maximum, which is 2.24 times that of the pure water condition. Some amplitudes at one frequency fluctuate at different times when the IGVF is higher than 10%. The findings contribute theoretical support in improving the stability of multiphase pumps.

Funder

National Natural Science Foundation of China

Shaanxi Province Postdoctoral Research Projecct

Scientific Research Program for Youth Innovation Team Constuction of Shaanxi Provincial Department of Education

Doctoral Dissertation Innovation Fund of Xi'an University of Technology

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3