Phonon transport along long polymer chains with varying configurations: Effects of phonon scattering

Author:

Zimbovskaya Natalya A.1ORCID,Nitzan Abraham23ORCID

Affiliation:

1. Department of Physics and Electronics, University of Puerto Rico-Humacao 1 , CUH Station, Humacao, Puerto Rico 00791, USA

2. Department of Chemistry, University of Pennsylvania 2 , Philadelphia, Pennsylvania 19104, USA

3. School of Chemistry, Tel Aviv University 3 , Tel Aviv, Israel

Abstract

Following recent molecular dynamic simulations [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)], we theoretically analyze how the phonon heat transport along a single polymer chain may be affected by varying the chain configuration. We suggest that phonon scattering controls the phonon heat conduction in strongly compressed (and tangled) chain when multiple random bends act as scattering centers for vibrational phonon modes, which results in the diffusive character of heat transport. As the chain is straightening up, the number of scatterers decreases, and the heat transport acquires nearly ballistic character. To analyze these effects, we introduce a model of a long atomic chain made out of identical atoms where some atoms are put in contact with scatterers and treat the phonon heat transfer through such a system as a multichannel scattering problem. We simulate the changes in the chain configurations by varying the number of the scatterers and mimic a gradual straightening of the chain by a gradual reducing of the number of scatterers attached to the chain atoms. It is demonstrated, in agreement with recently published simulation results, that the phonon thermal conductance shows a threshold-like transition from the limit where nearly all atoms are attached to the scatterers to the opposite limit where the scatterers vanish, which corresponds to a transition from the diffusive to the ballistic phonon transport.

Funder

NSF-DMR-PREM

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3