Optical signatures of the coupling between excitons and charge transfer states in linear molecular aggregates

Author:

Manrho M.1ORCID,Jansen T. L. C.1ORCID,Knoester J.12ORCID

Affiliation:

1. Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

2. Faculty of Science, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands

Abstract

Charge Transfer (CT) has enjoyed continuous interest due to increasing experimental control over molecular structures, leading to applications in, for example, photovoltaics and hydrogen production. In this paper, we investigate the effect of CT states on the absorption spectrum of linear molecular aggregates using a scattering matrix technique that allows us to deal with arbitrarily large systems. The presented theory performs well for both strong and weak mixing of exciton and CT states, bridging the gap between previously employed methods, which are applicable in only one of these limits. In experimental spectra, the homogeneous linewidth is often too large to resolve all optically allowed transitions individually, resulting in a characteristic two-peak absorption spectrum in both the weak- and strong-coupling regime. Using the scattering matrix technique, we examine the contributions of free and bound states in detail. We conclude that the skewness of the high-frequency peak may be used as a new way to identify the exciton–CT-state coupling strength.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photosynthetic light harvesting and energy conversion;The Journal of Chemical Physics;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3