Auto-encoder-assisted analysis of amplitude and wavelength modulation of near-wall turbulence by outer large-scale structures in channel flow at friction Reynolds number of 5200

Author:

Agostini L.1ORCID,Leschziner M.2ORCID

Affiliation:

1. Departement of Fluids, Thermal and Combustion, CNRS/Institut Pprime/Université de Poitiers, Poitiers, France

2. Department of Aeronautics, Imperial College London, London, United Kingdom

Abstract

This paper reports a novel methodology that allows the intensity of, and the underlying mechanism for, the amplitude and length-scale modulation (amplification or attenuation) of turbulent stresses in the inner layer of a channel flow at [Formula: see text] to be clarified. A unique aspect of the present framework is the use of an auto-encoder algorithm to separate full-volume extremely large direct numerical simulation (DNS) fields into large-scale and small-scale motions. This approach is adopted in preference to the empirical mode decomposition (EMD) previously used by the present authors at the lower Reynolds number, [Formula: see text], because resource requirements posed by the EMD quickly become untenable due to the extremely large DNS dataset and the large solution box needed to capture the wide spectrum of scales at the present Reynolds number. A second original element is a formalism that derived the modulation, conditional on large-scale fluctuations, from continuous statistical quantities represented as multivariable-joint probability-density functions, thus obviating the need for any discrete representation or binning beyond that imposed by the discrete DNS solution. A third novel aspect is the use of the length-scale-wise derivative of the second-order structure function to quantify the modulation (increase or decrease) in the length scale, again conditional on large-scale structures. Apart from illuminating the modulation itself, the study examined the validity of the quasi-steady hypothesis that proposes that the near-wall turbulence is universal when scaled by the spatially and temporally varying large-scale wall shear stress rather than its time average.

Funder

EUR Intree

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3