Noise-mitigation strategies in physical feedforward neural networks

Author:

Semenova N.12ORCID,Brunner D.1ORCID

Affiliation:

1. Département d’Optique P. M. Duffieux, Institut FEMTO-ST, Université Bourgogne-Franche-Comté, CNRS UMR 6174, Besançon, France

2. Institute of Physics, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia

Abstract

Physical neural networks are promising candidates for next generation artificial intelligence hardware. In such architectures, neurons and connections are physically realized and do not leverage digital concepts with their practically infinite signal-to-noise ratio to encode, transduce, and transform information. They, therefore, are prone to noise with a variety of statistical and architectural properties, and effective strategies leveraging network-inherent assets to mitigate noise in a hardware-efficient manner are important in the pursuit of next generation neural network hardware. Based on analytical derivations, we here introduce and analyze a variety of different noise-mitigation approaches. We analytically show that intra-layer connections in which the connection matrix’s squared mean exceeds the mean of its square fully suppress uncorrelated noise. We go beyond and develop two synergistic strategies for noise that is uncorrelated and correlated across populations of neurons. First, we introduce the concept of ghost neurons, where each group of neurons perturbed by correlated noise has a negative connection to a single neuron, yet without receiving any input information. Second, we show that pooling of neuron populations is an efficient approach to suppress uncorrelated noise. As such, we developed a general noise-mitigation strategy leveraging the statistical properties of the different noise terms most relevant in analog hardware. Finally, we demonstrate the effectiveness of this combined approach for a trained neural network classifying the modified National Institute of Standards and Technology handwritten digits, for which we achieve a fourfold improvement of the output signal-to-noise ratio. Our noise mitigation lifts the 92.07% classification accuracy of the noisy neural network to 97.49%, which is essentially identical to the 97.54% of the noise-free network.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of white noise in artificial neural networks trained for classification: Performance and noise mitigation strategies;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-05-01

2. Research and application of composite stochastic resonance in enhancement detection;Chinese Physics B;2024-01-01

3. How noise impacts on trained echo-state neural network;2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA);2023-09-18

4. Data-Driven Modeling of Mach-Zehnder Interferometer-Based Optical Matrix Multipliers;Journal of Lightwave Technology;2023-08-15

5. Noise influence on recurrent neural network with nonlinear neurons;Izvestiya VUZ. Applied Nonlinear Dynamics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3