Affiliation:
1. Advanced Composite Group, Department of Mechanical and Aerospace Engineering, University of Strathclyde 2 , Glasgow, United Kingdom
2. Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde 1 , Glasgow, United Kingdom
Abstract
The use of flexible materials for primary mover and power takeoff of wave energy converters (WECs) has attracted considerable attention in recent years, owing to their potential to enhance the reliability, survivability, and wave energy conversion efficiency. Although some reduced order models have been used to study the fluid–structure interaction (FSI) responses of flexible wave energy converters (fWECs), they are somehow inappropriate due to their limited accuracy and applicability span. To gain a deeper understanding of the physical mechanisms in fWECs, a high-fidelity approach is required. In this work, we build up a fluid–structure interaction analysis framework based on computational fluid dynamics and a finite element analysis method. The incompressible viscous flow is resolved by solving three-dimensional unsteady Navier–Stokes equations with a finite volume approach. The structure dynamics are solved by a finite element method, taking the nonlinear behavior of flexible material into consideration. A strong coupling strategy is utilized to enhance the numerical stability and convergence of the iterative process. We demonstrate the present FSI tool is able to provide rich flow field information and structural response details, such as the velocity, pressure, and structural stress distribution. This is illustrated through several case studies, including two types of fWECs. The unsteady wave–structure-interaction and the associated nonlinear phenomena are also accurately captured by this tool.
Funder
Bionic Adaptive Stretchable Materials for WEC
Cirrus UK National Tier-2 HPC Service at EPCC
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献