Analysis of turbulent mixing in a methane–oxygen recessed injector for space propulsion

Author:

Martinez-Sanchis Daniel1ORCID,Sternin Andrej12,Jocher Agnes1ORCID,Haidn Oskar1

Affiliation:

1. Technische Universität München 1 , Boltzmannstraße 15, Garching, Germany

2. Technische Universität Dresden, Marschnerstraße 32 2 , Dresden, Germany

Abstract

Turbulent mixing in a methane–oxygen recessed injector is studied using direct numerical simulations. The operating point is chosen to be fuel-rich and at high pressure to recreate a representative environment for space propulsion applications. The results are used to investigate the transport of the turbulent mixture fraction statistics and the validity of conventional transport models. It is observed that molecular diffusion is only relevant near the boundary layer of the injection recess cavity and at the recirculation zone. Moreover, turbulent mixing in the axial direction is negligible as radial turbulent diffusion dominates. Radial turbulent diffusion near injection is driven by Kelvin–Helmholtz Instabilities (KHI) manifesting at large scales in the order of the injector geometry. The dominance of this process over microscale mixing originates negative turbulent diffusion, which produces a mixture resegregation and the appearance of lean pockets far from the oxidizer injection plane. Gradient models display poor capabilities for the prediction of this sort of phenomena. Closure models for the turbulent mixing transport terms are proposed and evaluated. An anisotropic gradient model is devised, providing performance improvements within the recess cavity and the recirculation region. In addition, a novel filtered Reynolds-averaged Navier Stokes approach based on the mixing state is proposed. This new methodology shows excellent prediction capabilities in the regions dominated by KHI, accurately predicting negative turbulent diffusivity. The challenges associated with this model are commented on, and strategies to enable its application are proposed.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference88 articles.

1. Green propellant propulsion concepts for space transportation and technology development needs,2004

2. Trends in research and development on green chemical propulsion for orbital systems,2015

3. GRASP: Status and future of green propellants,2012

4. Liquid propellant rocket engines,2009

5. Green propulsion advancement—Challenging the maturity of monopropellant hydrazine,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3