Ultra-high temperature Soret effect in a silicate melt: SiO2 migration to cold side

Author:

Nishida Yuma1,Shimizu Masahiro1ORCID,Okuno Tatsuya1,Matsuoka Jun2ORCID,Shimotsuma Yasuhiko1ORCID,Miura Kiyotaka1ORCID

Affiliation:

1. Department of Material Chemistry, Graduate School of Engineering, Kyoto University 1 , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

2. School of Engineering, The University of Shiga Prefecture 2 , Hikone 522-8533, Japan

Abstract

The Soret effect, temperature gradient driven diffusion, in silicate melts has been investigated intensively in the earth sciences from the 1980s. The SiO2 component is generally concentrated in the hotter region of silicate melts under a temperature gradient. Here, we report that at ultra-high temperatures above ∼3000 K, SiO2 becomes concentrated in the colder region of the silicate melts under a temperature gradient. The interior of an aluminosilicate glass [63.3SiO2–16.3Al2O3–20.4CaO (mol. %)] was irradiated with a 250 kHz femtosecond laser pulse for local heating. SiO2 migrated to the colder region during irradiation with an 800 pulse (3.2 ms irradiation). The temperature analysis indicated that migration to the colder region occurred above 3060 K. In the non-equilibrium molecular dynamics (NEMD) simulation, SiO2 migrated to the colder region under a temperature gradient, which had an average temperature of 4000 K; this result supports the experimental result. On the other hand, SiO2 exhibited a tendency to migrate to the hotter region at 2400 K in both the NEMD and experimental study. The molar volume calculated by molecular dynamics simulation without a temperature gradient indicates two bends at 1650 and 3250 K under 500 MPa. Therefore, the discontinuous (first order) transition with coexistence of two phases of different composition could be related to the migration of SiO2 to colder region. However, the detailed mechanism has not been elucidated.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3