Design and performance of a double-solenoid magnetic bottle photoelectron spectrometer for attosecond metrology

Author:

Kumar M.1ORCID,Singhal H.12ORCID,Ansari A.1ORCID,Chakera J. A.12ORCID

Affiliation:

1. Raja Ramanna Centre for Advanced Technology 1 , Indore 452 013, India

2. Home Bhabha National Institute 2 , Anushakti Nagar, Mumbai 400 094, India

Abstract

The design and performance of an in-house developed double-solenoid magnetic bottle (MB) time-of-flight photoelectron spectrograph are presented. A combination of a strong permanent magnet (Sm2Co17) with a soft iron cone and a double-solenoid geometry is used to generate MB configuration. The first solenoid (length ∼150 mm) is placed inside the vacuum, and the second solenoid (length ∼1 m) is placed outside the vacuum. The double-solenoid geometry improves the effective conductance and reduces overall material outgassing. Due to this, an ultra-high vacuum (∼5 × 10−8 mbar) desirable for the working of the spectrograph was achieved using a small capacity (300 lps) turbo-molecular pump. An optimization of solenoid current generates a smooth magnetic field variation in MB, which keeps the adiabaticity parameter ∼0.6 at ∼25 eV photoelectron energy. The double-solenoid geometry also provides high collection efficiency as well as high energy resolution of the spectrograph. The experimentally measured energy resolution (ΔE) of the spectrograph is better than ∼60 meV at ∼15 eV photoelectron energy. The collection efficiency is estimated to be ∼25% under optimum conditions as compared with ∼10−4 in field-free configuration. The calibrated MB spectrograph is used for the characterization of the attosecond pulse train using a cross-correlation “RABBITT” technique. The attosecond pulse train is generated from 15th to 25th odd high-harmonic orders, in argon filled cell. Attosecond pulses of average duration ∼260 as (FWHM) have been measured. The proposed MB electron spectrograph design provides a compact experimental setup for attosecond metrology and pump-probe studies with a relaxed requirement on vacuum pump capacity.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3