Ultrafast and terahertz spintronics: Guest editorial

Author:

Kampfrath Tobias12ORCID,Kirilyuk Andrei3ORCID,Mangin Stéphane4ORCID,Sharma Sangeeta5ORCID,Weinelt Martin1ORCID

Affiliation:

1. Department of Physics, Freie Universität Berlin 1 , Berlin, Germany

2. Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society 2 , Berlin, Germany

3. FELIX Laboratory, Radboud University Nijmegen 3 , Nijmegen, The Netherlands

4. Université de Lorraine, CNRS, IJL 4 , Nancy, France

5. Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy 5 , Berlin, Germany

Abstract

Spin-based electronics (spintronics) aims at extending electronic functionalities, which rely on the electron charge as information carrier, by the spin of the electron. To make spintronics competitive and compatible with other information carriers like photons and electrons, their speed needs to be pushed to femtosecond time scales and, thus, terahertz frequencies. In ultrafast and terahertz spintronics, femtosecond optical and terahertz electromagnetic pulses are used to induce spin torque and spin transport and to monitor the subsequent time evolution. The two approaches, sometimes referred to as femto-magnetism and terahertz magnetism, have provided new, surprising, and relevant insight as well as applications for spintronics. Examples include the ultrafast optical switching of magnetic order and the generation of broadband terahertz electromagnetic fields. This APL Special Topic Collection is dedicated to provide a platform for the newest developments and future trends in the very active, dynamic, and exciting research field of ultrafast and terahertz spintronics.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020 Framework Programme

European Cooperation in Science and Technology

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spin vacuum switching;Science Advances;2024-07-12

2. Terahertz-frequency oscillator driven by spin–orbit torque in NiF2/Pt bilayers;Journal of Physics D: Applied Physics;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3