Novel flexible fixed-time stability theorem and its application to sliding mode control nonlinear systems

Author:

Liu Jingang1ORCID,Li Ruiqi1ORCID,Zheng Jianyun2ORCID,Bu Lei1ORCID,Liu Xianghuan3ORCID

Affiliation:

1. School of Mathematics and Computational Science, Xiangtan University 1 , Xiangtan 411105, China

2. School of Mechanical Engineering, Hunan Institute Of Engineering 2 , Xiangtan 411105, China

3. Zhuzhou Gear Co., LTD 3 , Zhuzhou 412000, China

Abstract

For the fixed-time nonlinear system control problem, a new fixed-time stability (FxTS) theorem and an integral sliding mode surface are proposed to balance the control speed and energy consumption. We discuss the existing fixed time inequalities and set up less conservative inequalities to study the FxTS theorem. The new inequality differs from other existing inequalities in that the parameter settings are more flexible. Under different parameter settings, the exact upper bound on settling time in four cases is discussed. Based on the stability theorem, a new integral sliding mode surface and sliding mode controller are proposed. The new control algorithm is successfully applied to the fixed-time control of chaotic four-dimensional Lorenz systems and permanent magnet synchronous motor systems. By comparing the numerical simulation results of this paper’s method and traditional fixed-time sliding mode control (SMC), the flexibility and superiority of the theory proposed in this paper are demonstrated. Under the same parameter settings, compared to the traditional FxTS SMC, it reduces the convergence time by 18%, and the estimated upper bound of the fixed time reduction in waiting time is 41%. In addition, changing the variable parameters can improve the convergence velocity.

Funder

Hunan Province Manufacturing Key Products “Reveal the List” Project

The Science and Technology Innovation Program of Hunan Province

The National Natural Science Foundation of China Under Grants

Hunan Innovative Province Construction Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3