Forced vibration of liquid-filled composite laminated shell container considering fluid–structure interaction by the scaled boundary finite element method

Author:

Liu Jun,Zhang Wen-Qiang,Ye Wen-BinORCID,Gan LeiORCID,Qin Lei,Zang Quan-Sheng,Wang Hai-Bo

Abstract

In this paper, the scaled boundary finite element method (SBFEM) is first applied to the forced vibration analysis of partially liquid-filled composite laminated shell structure considering fluid–structure interaction. In comparison with the finite element method, the SBFEM only requires discretization of the boundary of the solution domain, which can reduce the spatial dimension of the problem by one and provide the radial analytical expressions for the variables within the solution domain. The structure consists of a multi-layered fiber-reinforced composite laminated shell and incompressible, inviscid, and irrotational liquid. After separately describing the basic expressions for the fluid and composite laminated shell, which includes the transformation of three coordinate systems and the establishment of the constitutive equations for the shell, the governing equations for the fluid and shell structure using the scaled boundary finite element method and modified SBFEM based on scaling surface transformation are formulated, respectively. Meanwhile, the Newmark method and synchronous solution algorithm are employed for the fluid–structure interaction analysis. Subsequently, two validation cases are conducted to assess the accuracy and convergence of the model. Finally, two numerical examples are employed to perform a parameter analysis on the model, involving the response of the system to ground horizontal harmonic excitation and seismic load. The results indicate that the SBFEM, as a semi-analytical high-precision numerical method, can be effectively used to simulate fluid–structure interaction problem of partially liquid-filled laminated composite shell structures.

Funder

National Natural Science Foundation of China

YangTze River Water Science Research Joint Fund Key Project of National Natural Science Foundation of China

Open Fund of State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology

Technology Research and Development Project of National Railway Group

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3