Investigating Bénard–Marangoni migration at the air–water interface in the time domain using sum frequency generation (SFG) spectroscopy of palmitic acid monolayers

Author:

Fellows A. P.1ORCID,Casford M. T. L.1ORCID,Davies P. B.1ORCID

Affiliation:

1. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Abstract

Sum-frequency generation (SFG) spectroscopy is frequently used to investigate the structure of monolayer films of long-chain fatty acids at the air–water interface. Although labeled a non-invasive technique, introducing intense SFG lasers onto liquid interfaces has the potential to perturb them. In the present work, narrowband picosecond SFG is used to study the structural changes that occur in palmitic acid and per-deuterated palmitic acid monolayers at the air–water interface in response to the high field strengths inherent to SFG spectroscopy. In order to determine structural changes and identify measurement artifacts, the changes in specific resonance intensities were measured in real-time and over a broad range of surface concentrations from films spread onto a stationary Langmuir trough. Using narrowband instead of broadband SFG minimizes the overlap of the incident infrared beam in the lipid C–H stretching region with resonances from the water sub-phase. Nevertheless, narrowband SFG still generates a thermal gradient at the surface, which produces a significant decrease in local concentration in the area of the laser spot caused by Bérnard–Marangoni convection originating in the sub-phase. The decrease in concentration results in an increase in the conformational disorder and a decrease in the tilt angle of lipid tails. Crucially, it is shown that, even at the highest monolayer concentrations, this gives rise to a measurement effect, which manifests itself as a dependence on the spectral acquisition time. This effect should be taken into account when interpreting the structure of monolayer films on liquid surfaces deduced from their SFG spectra.

Funder

Engineering and Physical Sciences Research Council

Unilever

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3