Affiliation:
1. Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01002, USA
Abstract
The bond strength and photodissociation dynamics of MgI+ are determined by a combination of theory, photodissociation spectroscopy, and photofragment velocity map imaging. From 17 000 to 21 500 cm−1, the photodissociation spectrum of MgI+ is broad and unstructured; photofragment images in this region show perpendicular anisotropy, which is consistent with absorption to the repulsive wall of the (1) Ω = 1 or (2) Ω = 1 states followed by direct dissociation to ground state products Mg+ (2S) + I (2P3/2). Analysis of photofragment images taken at photon energies near the threshold gives a bond dissociation energy D0(Mg+-I) = 203.0 ± 1.8 kJ/mol (2.10 ± 0.02 eV; 17 000 ± 150 cm−1). At photon energies of 33 000–41 000 cm−1, exclusively I+ fragments are formed. Over most of this region, the formation of I+ is not energetically allowed via one-photon absorption from the ground state of MgI+. Images show the observed product is due to resonance enhanced two-photon dissociation. The photodissociation spectrum from 33 000 to 38 500 cm−1 shows vibrational structure, giving an average excited state vibrational spacing of 227 cm−1. This is consistent with absorption to the (3) Ω = 0+ state from ν = 0, 1 of the (1) Ω = 0+ ground state; from the (3) Ω = 0+ state, absorption of a second photon results in dissociation to Mg* (3P°J) + I+ (3PJ). From 38 500 to 41 000 cm−1, the spectrum is broad and unstructured. We attribute this region of the spectrum to one-photon dissociation of vibrationally hot MgI+ at low energy and ground state MgI+ at higher energy to form Mg (1S) + I+ (3PJ) products.
Funder
National Science Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy