A novel means to generate high pressure

Author:

Pravica Michael1ORCID,Cifligu Petrika1,Sanchez Adrian Lua1ORCID,Malik Trimaan1ORCID,Appathurai Narayan2ORCID,Moreno Beatriz Diaz2ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Nevada 1 , Las Vegas, Nevada 89154, USA

2. Brockhouse Beamline, Canadian Light Source 2 , Saskatoon, Saskatchewan S7N 2V3, Canada

Abstract

Diamond anvil cells are the most popular means of generating pressures above 2 GPa. However, in many experiments, such as nuclear magnetic resonance and x-ray absorption, the metallic pressurizing gasket (which confines much of the sample) represents an occluding barrier that requires a low Z gasket material (e.g., Be), a split gasket, or other means to enable better coupling of the sample to electromagnetic radiation. In this paper, we demonstrate a novel method for generating high pressures that confines the sample just above the plane of the gasket by using a diamond with a laser hole drilled into the center of the tip. The sample is then confined by the hole, which is sealed by a flat gasket that fits over the hole. When load is applied to the diamonds, metal flows from the deformed gasket into the hole thereby pressurizing the sample similarly to how a piston pressurizes gas inside a cylinder. The pressurized sample is above the metallic gasket plane just inside the tip of the diamond, and thus easily accessible via x rays or visible light that skims just above the plane of the gasket providing an enhanced aperture of radiation collection. We have demonstrated the utility of this method by obtaining Raman spectra of SnC2O4 and x-ray diffraction spectra of seleno-DL-cystine, all at high pressures.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3