Vibrational heat-bath configuration interaction with semistochastic perturbation theory using harmonic oscillator or VSCF modals

Author:

Tran Henry K.1ORCID,Berkelbach Timothy C.1ORCID

Affiliation:

1. Department of Chemistry, Columbia University , New York, New York 10027, USA

Abstract

Vibrational heat-bath configuration interaction (VHCI)—a selected configuration interaction technique for vibrational structure theory—has recently been developed in two independent works [J. H. Fetherolf and T. C. Berkelbach, J. Chem. Phys. 154, 074104 (2021); A. U. Bhatty and K. R. Brorsen, Mol. Phys. 119, e1936250 (2021)], where it was shown to provide accuracy on par with the most accurate vibrational structure methods with a low computational cost. Here, we eliminate the memory bottleneck of the second-order perturbation theory correction using the same (semi)stochastic approach developed previously for electronic structure theory. This allows us to treat, in an unbiased manner, much larger perturbative spaces, which are necessary for high accuracy in large systems. Stochastic errors are easily controlled to be less than 1 cm−1. We also report two other developments: (i) we propose a new heat-bath criterion and an associated exact implicit sorting algorithm for potential energy surfaces expressible as a sum of products of one-dimensional potentials; (ii) we formulate VHCI to use a vibrational self-consistent field (VSCF) reference, as opposed to the harmonic oscillator reference configuration used in previous reports. Our tests are done with quartic and sextic force fields, for which we find that with VSCF, the minor improvements to accuracy are outweighed by the higher computational cost associated the matrix element evaluations. We expect VSCF-based VHCI to be important for more general potential representations, for which the harmonic oscillator basis function integrals are no longer analytic.

Funder

U.S. Department of Energy

National Institutes of Health

Empire State Development’s Division of Science, Technology and Innovation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3