Effective temperature for an intermittent bistable potential

Author:

Jerez Michael Jade Y.1ORCID,Rangaig Norodin A.2ORCID,Confesor Mark Nolan P.1ORCID

Affiliation:

1. Department of Physics and Complex Systems Research Center–PRISM, Mindanao State University–Iligan Institute of Technology 1 , 9200 Iligan City, Philippines

2. Department of Physics, Mindanao State University–Marawi Campus 2 , 9700 Marawi City, Philippines

Abstract

Thermodynamics of far-from-equilibrium systems often require measurement of effective parameters such as temperature. Whether such approach is valid for the general case of resetting protocols, active systems, or of confined systems under time-varying fields is still under investigation. We report on the effect of switching ON-OFF of an asymmetric bistable potential to the mean first passage time (MFPT) of a probed particle to go from one potential minima to the other. Experimental results coupled with numerical simulations shows the potential becoming more symmetric at slow switching. Moreover, the MFPT deviates from equilibrium condition with an effective temperature, Teff < T, at slow switching but approaches room temperature, T, at fast switching. For each switching rate, we quantify how far the system is from equilibrium by measuring deviation from a detailed balance like relation and the net circulation of flux present in phase-space. Both analysis suggest equilibrium condition are met at high switching.

Funder

Office of the Vice Chancellor for Research and Extension, Iligan Institute of Technology, Mindanao State University

Philippine Council for Industry, Energy, and Emerging Technology Research and Development

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3