Comparing spin injection in Fe75Co25/Bi2Te3 at GHz and optical excitations

Author:

Sharma Vinay1ORCID,Nepal Rajeev1ORCID,Wu Weipeng2ORCID,Pogue E. A.3ORCID,Kumar Ravinder1ORCID,Kolagani Rajeswari4ORCID,Gundlach Lars25ORCID,Jungfleisch M. Benjamin2ORCID,Budhani Ramesh C.1ORCID

Affiliation:

1. Department of Physics, Morgan State University 1 , Baltimore, Maryland 21210, USA

2. Department of Physics and Astronomy, University of Delaware 2 , Newark, Delaware 19716, USA

3. Department of Chemistry, The Johns Hopkins University 3 , Baltimore, Maryland 21218, USA

4. Department of Physics, Astronomy and Geosciences, Towson University 4 , Towson, Maryland 21252, USA

5. Department of Chemistry and Biochemistry, University of Delaware 5 , Newark, Delaware 19716, USA

Abstract

Spin-to-charge conversion (S2CC) processes in thin-film heterostructures have attracted much attention in recent years. Here, we describe the S2CC in a 3D topological insulator Bi2Te3 interfaced with an epitaxial film of Fe75Co25. The quantification of spin-to-charge conversion is made with two complementary techniques: ferromagnetic resonance based inverse spin Hall effect (ISHE) at GHz frequencies and femtosecond light-pulse induced emission of terahertz (THz) radiation. The role of spin rectification due to extrinsic effects like anisotropic magnetoresistance (AMR) and planar Hall effects (PHE) is pronounced at the GHz timescale, whereas the THz measurements do not show any detectible signal, which could be attributed to AMR or PHE. This result may be due to (i) homodyne rectification at GHz, which is absent in THz measurements and (ii) laser-induced thermal spin current generation and magnetic dipole radiation in THz measurements, which is completely absent in GHz range. The converted charge current has been analyzed using the spin diffusion model for the ISHE. We note that regardless of the differences in timescales, the spin diffusion length in the two cases is comparable. Our results aid in understanding the role of spin pumping timescales in the generation of ISHE signals.

Funder

Air Force Office of Scientific Research

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3