Micromagnetic simulations for local phase control of propagating spin waves through voltage-controlled magnetic anisotropy

Author:

Petrillo Adrien. A. D.1ORCID,Fattouhi Mouad2ORCID,Di Pietro Adriano34ORCID,Alerany Solé Marta1ORCID,Lopez-Diaz Luis2ORCID,Durin Gianfranco3ORCID,Koopmans Bert1ORCID,Lavrijsen Reinoud1ORCID

Affiliation:

1. Department of Applied Physics, Eindhoven University of Technology 1 , Eindhoven, The Netherlands

2. Departamento de Física Aplicada, Universidad de Salamanca 2 , 37008 Salamanca, Spain

3. Istituto Nazionale di Ricerca Metrologica 3 , Strada delle Cacce 91, 10135 Torino, Italy

4. Politecnico di Torino 4 , Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Spin waves, known for their ability to propagate without the involvement of moving charges, hold immense promise for on-chip information transfer and processing, offering a path toward post-CMOS computing technologies. This study investigates the potential synergy between propagating Damon–Eshbach spin waves and voltage-controlled magnetization in the pursuit of environmentally sustainable computing solutions. Employing micromagnetic simulations, we assess the feasibility of utilizing spin waves in DE mode in conjunction with localized voltage-induced alterations in surface anisotropy to enable low-energy logic operations. Our findings underscore the critical importance of selecting an optimal excitation frequency and gate width, which significantly influence the efficiency of the phase shift induced in propagating spin waves. Notably, we demonstrate that a realistic phase shift of 2.5 [π mrad] can be achieved at a Co(5 nm)/MgO material system via the voltage-controlled magnetic anisotropy effect. Moreover, by tuning the excitation frequency, Co layer thickness, gate width, and carefully selecting the dielectric layer, we extrapolate the potential to enhance the phase shift by a factor of 200 when compared to MgO dielectrics. This research contributes valuable insights toward developing next-generation computing technologies with reduced energy consumption.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

AIP Publishing

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3