Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films

Author:

Bera Anup Kumar12ORCID,Jamal Md. Shahid1ORCID,Khanderao Avinash Ganesh13ORCID,Singh Sharanjeet1ORCID,Kumar Dileep1ORCID

Affiliation:

1. UGC-DAE Consortium for Scientific Research 1 In-situ Thin Film Lab, , Khandwa Road, Indore 452001, India

2. Department of Materials Engineering, Indian Institute of Science 2 , Bangalore 520016, India

3. Department of Physics, Jagadamba Mahavidyalaya 3 , Achalpur 444806, India

Abstract

The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3