A metamaterial sensor for detecting the location of a sub-wavelength object

Author:

Hua Yujie12ORCID,Tang Wenxuan12ORCID,Cui Tie Jun12ORCID

Affiliation:

1. State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China

2. Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China

Abstract

A metamaterial sensor is proposed to detect the random location of a sub-wavelength metallic object. The sensor is composed of a transmission line (TL), which supports the propagation of spoof surface plasmon polaritons (SSPPs) with localized electromagnetic (EM) field, and a complementary spiral resonator (CSR) that resonates strongly at designed frequencies around 0.9 and 2.7 GHz. Based on the shift of the resonance frequencies, this sensor is able to detect the location of a sub-wavelength metallic object (whose diameter is smaller than 0.6 mm) randomly attached to the CSR. A prototype of the sensor is fabricated and tested. In practice, the CSR is excited through the EM coupling of the SSPP TL, and the location of the metallic object is obtained through the transmission coefficient (S21). To improve the accuracy, a retrieval curve for locating is generated and calibrated. It is proved that the random location of the sub-wavelength object can be accurately detected inside an area of 9π mm2 with a low error of 2‰.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3