Synthesis and characterization of metal carbides for nanoindentation tip applications

Author:

Boatner L. A.1ORCID,Finch C. B.1,Brundage W. E.1,Kolopus J. A.1,Gruzalski G. R.1,Johanns K. E.2ORCID,Sudharshan Phani P.3ORCID,Pharr G. M.4ORCID,Oliver W. C.2

Affiliation:

1. Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA

2. KLA, 1 Technology Drive, Milpitas, California 95053, USA

3. International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad, Telangana 500005, India

4. Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA

Abstract

Instrumented indentation experiments at elevated temperatures require careful attention to a myriad of experimental details. Not the least of these is the choice of the indenter tip material. Traditional room-temperature indenters, e.g., diamond and sapphire, can break down, react, and wear excessively at elevated temperatures. In this work, rf-induction heating float-zone and high-temperature solution single-crystal growth techniques have been used to prepare a suite of bulk refractory carbide specimens (i.e., ZrC, VC0.86, NbC, TiC0.95, WC). These potential indenter tip materials were subsequently characterized using nanoindentation testing techniques to determine their single-crystal elastic modulus, hardness, and fracture toughness in order to evaluate their potential for use as elevated-temperature nanoindentation tips. Additionally, subject carbide crystal characteristics were compared to those of single-crystal sapphire and polycrystalline WC-Co. The cumulative results show that single-crystal WC is a promising candidate for indenter tip material based on a combination of its high elastic modulus, hardness, and resistance to cracking—in addition to being crystallographically favorable for fabrication in the frequently used three-sided pyramidal indenter tip geometries.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3