Vortex breakdown in time-dependent electromagnetically driven flow between concentric spheres

Author:

Piedra S.1ORCID,Rojas J. A.2ORCID,Rivera I.2ORCID,Figueroa A.3ORCID

Affiliation:

1. CONACYT-Centro de Ingeniería y Desarrollo Industrial, Querétaro, Qro. 76270, Mexico

2. Instituto de Investigación en Ciencias Básicas y Aplicadas-Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico

3. CONACYT-Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico

Abstract

The electromagnetically driven flow in the wide gap of a concentric sphere system is studied experimentally and numerically in the laminar regime ([Formula: see text]). The azimuthal driving Lorentz force is primarily promoted by the interaction of a direct current and a dipolar magnetic field. The current is injected through two ring-shaped copper electrodes located at the equatorial zone of each sphere, and the magnetic field is produced by a permanent magnet located inside the inner sphere. Velocity profiles for the azimuthal component in the equatorial plane were obtained with particle image velocimetry, and the radial velocity component of the flow was recorded using ultrasonic Doppler velocimetry. Laser-fluorescein technique was used for flow visualization. It was found that for a critical electric current ( Re =  1140), an instability occurs and the flow becomes time-dependent. We found, theoretically and experimentally, a vortex breakdown structure at each of the polar zones of the spherical gap, and to the best knowledge of the authors, this is the first time it is reported with electromagnetic forcing. A full three-dimensional numerical simulation reproduces the experimental observations qualitatively and quantitatively.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3