Improved model-free adaptive control considering wind speed and platform motion for floating offshore wind turbines

Author:

Yang Xiyun1,Zhang Yanfeng1ORCID,Wang Shuyan1,Chen He1

Affiliation:

1. School of Control and Computer Engineering, North China Electric Power University , Beijing 102206, China

Abstract

To cope with the problems of cumbersome modeling and strongly disturbances in the control of floating offshore wind turbines (FOWTs), an improved model-free adaptive control (MFAC) strategy considering both wind speed disturbance and floating platform motion response to wave disturbance is proposed. In this strategy, a detailed mathematical model of the FOWT is avoided and the feedback controller is designed based on improved MFAC using only the input–output data to dynamically linearize the FOWT. Strongly disturbances caused by random wind and floating platform motion response to wave are compensated by a feedforward controller. The proposed method and the comparison method including the baseline controller are simulated under different wind scenarios using FAST. The results show that the proposed controller regulates the generator speed more smoothly and closer to the rated value, suppresses the motion of the floating platform more effectively, and can significantly improve the performance of FOWTs.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3