Dynamical behavior of lubricant molecules under boundary lubrication explored via molecular dynamics simulations

Author:

Liu DongjieORCID,Liu ZiluORCID,Wei JinjiaORCID,Chen FeiORCID

Abstract

Boundary lubrication with extremely thin films widely occurs in various situations, for instance, in micro-electromechanical system lubrication and hard disk drive lubrication. Lubrication performance is significantly affected by the surface layer properties and interactions between solids and liquids. However, the molecular dynamical behaviors are still unclear. Thus, our work considers the dynamical behaviors of molecules under boundary lubrication via molecular dynamics simulations. Different pressures and metal slab shapes are chosen as the variable conditions. The results indicate that a smooth metal slab model has a special conformation recovery process during compressing under medium pressures. After inducing shear velocity, the lubrication film exhibits sticky, stick–slip, or slip flows under different pressures. Sticky flow is accompanied by a conformation adjustment consisting of conformation recovery, chain alignment, and structure equilibrium, but there is no chain alignment step in the other two flow modes. The conformation recovery includes atomic adsorption onto the Fe wall under small and medium pressures. Under large pressures, the conformation recovery refers to atomic desorption phenomena. In addition, some properties, such as gyration and chain orientation, are strongly modified by the solid surface and show distinct differences along the pressing direction. Under the same simulation conditions, the rough wall model shows no slip behaviors attributed to the increased equivalent contact wall area and stronger pinning effect. Our work provides new insights into understanding the in-depth mechanism of boundary lubrication, providing theoretical guidance in developing advanced boundary lubrication techniques.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3