Photoelectron spectroscopy and dissociative photoionization of fulminic acid, HCNO

Author:

Gerlach Marius1ORCID,Mant Barry2ORCID,Preitschopf Tobias1,Karaev Emil1ORCID,Mayer Dennis3ORCID,Quitián-Lara Heidy M.1ORCID,Hemberger Patrick4ORCID,Bozek John5ORCID,Worth Graham2ORCID,Fischer Ingo1ORCID

Affiliation:

1. Institute of Physical and Theoretical Chemistry, University of Würzburg 1 , 97074 Würzburg, Germany

2. Department of Chemistry, University College London 2 , London WC1H 0AJ, United Kingdom

3. Deutsches Elektronen-Synchrotron (DESY) 3 , 22607 Hamburg, Germany

4. Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI) 4 , 5232 Villigen, Switzerland

5. Synchrotron SOLEIL 5 , 91192 Gif-sur-Yvette, France

Abstract

We report a joint experimental and computational study of the photoelectron spectroscopy and the dissociative photoionization of fulminic acid, HCNO. The molecule is of interest to astrochemistry and astrobiology as a potential precursor of prebiotic molecules. Synchrotron radiation was used as the photon source. Dispersive photoelectron spectra were recorded from 10 to 22 eV, covering four band systems in the HCNO cation, and an ionization energy of 10.83 eV was determined. Transitions into the Renner–Teller distorted X+2Π state of the cation were simulated using wavepacket dynamics based on a vibronic coupling Hamiltonian. Very good agreement between experiment and theory is obtained. While the first excited state of the cation shows only a broad and unstructured spectrum, the next two higher states exhibit a well-resolved vibrational progression. Transitions into the excited electronic states of HCNO+ were not simulated due to the large number of electronic states that contribute to these transitions. Nevertheless, a qualitative assignment is given, based on the character of the orbitals involved in the transitions. The dissociative photoionization was investigated by photoelectron–photoion coincidence spectroscopy. The breakdown diagram shows evidence for isomerization from HCNO+ to HNCO+ on the cationic potential energy surface. Zero Kelvin appearance energies for the daughter ions HCO+ and NCO+ have been derived.

Funder

Deutsche Forschungsgemeinschaft

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3