Collisionless jet expanding into vacuum from a circular aperture

Author:

Cai Shiying1ORCID,Cai Chunpei1ORCID,Lin Edward1,Cooke David L.2ORCID,Li Jun3ORCID

Affiliation:

1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Dr., Houghton, Michigan 49931, USA

2. Space Vehicle Directorate, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, New Mexico 87117, USA

3. Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632

Abstract

Collisionless flows expanding into a vacuum from a circular slit are investigated using the gaskinetic theory. Both accurate and approximate expressions to the plume fields along a centerline and a constant radius are obtained, including the density, velocity components, and translational temperature. Special non-dimensional parameters such as the exit semi-opening angle, gas speed ratio at the exit, and positions are included in these expressions. Particle simulations with the direct simulation Monte Carlo method are performed to validate the above results. These expressions are complex and may need computers for evaluations; however, the cost is minor when compared to particle simulations. With the assumptions of a high or low exit speed ratio and small exit angle, simple explicit expressions for properties along the centerline and a constant radius are obtained. The investigations also find out that the cosine law relations can provide fast and crude estimations, but it is not recommended to use the cosine law relation to compute collisionless plume flowfields with a large exit speed.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3