Investigation of the spreading of a liquid metal droplet under a vertical magnetic field

Author:

Zhou JiandongORCID,Cheng ZixinORCID,Tang Yuhao,Yang JuanchengORCID

Abstract

In the liquid metal divertor of a magnetic confinement fusion device, the spreading characteristics of the liquid metal are crucial for ensuring the stable operation of the divertor. This study has experimentally investigated the spreading characteristics of a GaInSn alloy droplet on a solid substrate under a strong vertical magnetic field, with the magnetic field intensity ranging from 0 to 2.5 T. First, several parameters of the droplet, such as droplet shape, spreading factor, dynamic contact angle, spreading velocity, and rebound behavior after impacting, were studied without a magnetic field. The fitting relationship between maximum spreading factor βmax and Weber number We was obtained and has been compared with the scaling laws from the literature. Furthermore, the effect of the vertical magnetic field on those parameters has been investigated systematically. Quantitative results on βmax and the maximum spreading time tDmax, varied with the Hartmann number (Ha) and the We number, provide a comprehensive understanding of the spreading dynamics. The specific relationship between βmax and We number under different magnetic field intensities (B) shows that a vertical magnetic field has a great inhibiting effect on liquid metal droplet spreading. Finally, the influence of oxidation on droplet spreading characteristics also has been studied. These basic findings are important for the application of liquid metal on a divertor/limiter in a fusion reactor, offering a theoretical reference engineering design.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

National major scientific instruments and equipments development project of national natural science foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid Metal Machine;Handbook of Liquid Metals;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3