Affiliation:
1. Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, USA
Abstract
Developing fluorescence-encoded infrared (FEIR) vibrational spectroscopy for single-molecule applications requires a detailed understanding of how the molecular response and external experimental parameters manifest in the detected signals. In Paper I [L. Whaley-Mayda, A. Guha, and A. Tokmakoff, J. Chem. Phys. 159, 194201 (2023)] we introduced a nonlinear response function theory to describe vibrational dynamics, vibronic coupling, and transition dipole orientation in FEIR experiments with ultrashort pulses. In this second paper, we apply the theory to investigate the role of intermode vibrational coherence, the orientation of vibrational and electronic transition dipoles, and the effects of finite pulse durations in experimental measurements. We focus on measurements at early encoding delays—where signal sizes are largest and therefore of most value for single-molecule experiments, but where many of these phenomena are most pronounced and can complicate the appearance of data. We compare experiments on coumarin dyes with finite-pulse response function simulations to explain the time-dependent behavior of FEIR spectra. The role of the orientational response is explored by analyzing polarization-dependent experiments and their ability to resolve relative dipole angles in the molecular frame. This work serves to demonstrate the molecular information content of FEIR experiments, and develop insight and guidelines for their interpretation.
Funder
National Science Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献