S-band acoustoelectric amplifier in an InGaAs-AlScN-SiC architecture

Author:

Hackett L.1ORCID,Du X.2ORCID,Miller M.1ORCID,Smith B.1ORCID,Santillan S.1ORCID,Montoya J.1,Reyna R.1,Arterburn S.1ORCID,Weatherred S.1,Friedmann T. A.1ORCID,Olsson R. H.2ORCID,Eichenfield M.13ORCID

Affiliation:

1. Microsystems Engineering, Science, and Applications, Sandia National Laboratories 1 , Albuquerque, New Mexico 87123, USA

2. Department of Electrical and Systems Engineering, University of Pennsylvania 2 , Philadelphia, Pennsylvania 19104, USA

3. College of Optical Sciences, University of Arizona 3 , Tucson, Arizona 85719, USA

Abstract

Here, we report on an acoustoelectric slab waveguide heterostructure for phonon amplification using a thin Al0.58Sc0.42N film grown directly on a 4H-SiC substrate with an ultra-thin In0.53Ga0.47As epitaxial film heterogeneously integrated onto the surface of the Al0.58Sc0.42N. The aluminum scandium nitride film grown directly on silicon carbide enables a thin (∼850 nm thick) piezoelectric film to be deposited on a thermally conductive bulk substrate (370 W/m K for 4H-SiC); the high thermal conductivity of the substrate, large mobility of the semiconductor (∼7000 cm2/V s), and low carrier concentration (∼5 × 1015 cm−3) yield low self-heating. A Sezawa mode with optimal overlap between the peak of its evanescent electric field and the semiconductor charge carriers is supported. The high velocity of the heterostructure materials allows us to operate the Sezawa mode amplifier at 3.05 GHz, demonstrating a gain of 500 dB/cm (40 dB in 800 μm). Additionally, a terminal end-to-end radio frequency gain of 7.7 dB and a nonreciprocal transmission of 52.6 dB are achieved with a dissipated DC power of 2.3 mW. The power added efficiency and acoustic noise figure are also characterized.

Funder

National Science Foundation

Defense Advanced Research Projects Agency

Center for Integrated Nanotechnologies

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3