Toward a universal description of multiphase turbulence phenomena based on the vorticity transport equation

Author:

Saeedipour Mahdi1ORCID,Schneiderbauer Simon2ORCID

Affiliation:

1. Department of Particulate Flow Modelling, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria

2. Christian Doppler Laboratory for Multi-Scale Modeling of Multiphase Processes, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria

Abstract

Understanding the evolution of turbulence in multiphase flows remains a challenge due to the complex inter-phase interactions at different scales. This paper attempts to enlighten the multiphase turbulence phenomenon from a new perspective by exploiting the classical concept of vorticity and its role in the evolution of the turbulent energy cascade. We start with the vorticity transport equations for two different multiphase flow formulations, which are one-fluid and two-fluid models. By extending the decaying homogeneous isotropic turbulence (HIT) problem to the multiphase flow context, we performed two highly resolved simulations of HIT in the presence of (i) a thin interface layer and (ii) homogeneously distributed solid particle. These two configurations allow for the investigation of interfacial turbulence and particulate turbulence, respectively. In addition to the analysis of the global flow characteristic in both cases, we evaluate the spectral contribution of each production/dissipation mechanism in the vorticity transport equation to the distribution of vortical energy (enstrophy) across the scales. We base our discussion on the role of the main inter-phase interaction mechanisms in vorticity transport (i.e., the surface tension for interfacial turbulence and drag force for particulate turbulence) and unveil a similar contribution from these mechanisms to the multiphase turbulence cascade. The results also explain the deviation of kinetic energy and enstrophy spectra of multiphase HIT problems from their single-phase similitudes, confirming the validity of this approach for establishing a universal description of multiphase turbulence.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3