A macroscopic and mesoscopic model of Newtonian and non-Newtonian nanofluids with a two-energy equation method

Author:

Kefayati Gholamreza1ORCID

Affiliation:

1. School of Engineering, University of Tasmania, Hobart 7001, Tasmania, Australia

Abstract

We present an updated comprehensive macroscopic model of nanofluids, considering a revisited local thermal non-equilibrium (LTNE) condition to study the temperature difference between carrier fluid and nanoparticles. A new relation for thermal conductivity of solid and liquid phases in the LTNE condition is introduced which considers the possible particle aggregation. This model is thermodynamically consistent and covers the non-Newtonian models of nanofluids, including power-law and viscoplastic ones. A mesoscopic scheme based on the lattice Boltzmann method (LBM) which satisfies the presented macroscopic equations is introduced and derived. This investigation is a further development of our recent studies[G. H. R. Kefayati and A. Bassom, “A lattice Boltzmann method for single and two phase models of nanofluids: Newtonian and non-Newtonian nanofluids,” Phys. Fluids 33, 102008 (2021); G. H. R. Kefayati, “A two- and three-dimensional mesoscopic method for an updated non-homogeneous model of Newtonian and non-Newtonian nanofluids,” Phys. Fluids 34, 032003 (2022).] for simulating and analyzing nanofluids by a two-phase model. To assess the present numerical method, it is studied for a benchmark problem of natural convection in a cavity. The dimensional and non-dimensional macroscopic equations for the mentioned benchmark are defined and the implemented non-dimensional relations of LBM are shown. The present approach is verified with the obtained results of the mixture approach and a previous two-phase model, which demonstrated the accuracy of the presented method. The results including the temperature distributions of the solid and fluid phases, the nanoparticles distributions, and fluid flow behavior as well as the yielded/unyielded sections for the viscoplastic nanofluids are shown and discussed for the defined non-dimensional parameters. It was also demonstrated that the previous proposed thermal conductivity model of nanofluids in the LTNE approach generates a significantly different value compared to experimental results, and the current suggested model produces reliable results to the experimental ones.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3