Enhanced boiling heat transfer using conducting–insulating microcavity surfaces in an electric field: A lattice Boltzmann study

Author:

Cai FanmingORCID,Liu ZhaomiaoORCID,Zheng NanORCID,Pang YanORCID

Abstract

The field trap effect on the microcavity surface under the action of an electric field is not conducive to boiling heat transfer. This numerical study found that using conducting–insulating microcavity surfaces in an electric field removes the field trap effect, increasing the critical heat flux by more than 200%. Bubble behavior and heat transfer mechanisms on heating surfaces were further explored. The results show that a large electrical force can be generated at the junction of the conducting and insulating surfaces under the action of the electric field, which drives the bubbles in the cavity to departure quickly from the heating surface and avoids the formation of a vapor block. As the electric field intensity increases, the contact line produces pinning, which facilitates the formation of multiple continuously open vapor–liquid separation paths on the heating surface, resulting in a significant enhancement of the boiling heat transfer performance. Finally, a modified correlation equation is proposed to predict the critical heat flux under non-uniform electric field.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3