X-ray continuum spectroscopy of inertial confinement fusion implosions at the National Ignition Facility

Author:

Stoupin S.1ORCID,MacPhee A. G.1ORCID,Kozioziemski B.1ORCID,MacDonald M. J.1ORCID,Ose N.1ORCID,Heinmiller J. M.2ORCID,Izumi N.1ORCID,Rusby D.1ORCID,Springer P. T.1,Schneider M. B.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory 1 , Livermore, California 94550, USA

2. Nevada National Security Site, Livermore Operations 2 , Livermore, California 94550, USA

Abstract

A methodology for measuring x-ray continuum spectra of inertial confinement fusion (ICF) implosions is described. The method relies on the use of ConSpec, a high-throughput spectrometer using a highly annealed pyrolytic graphite crystal [MacDonald et al., J. Instrum. 14, P12009 (2019)], which measures the spectra in the ≃20–30 keV range. Due to its conical shape, the crystal is sagittally focusing a Bragg-reflected x-ray spectrum into a line, which enhances the recorded x-ray emission signal above the high neutron-induced background accompanying ICF implosions at the National Ignition Facility. To improve the overall measurement accuracy, the sensitivity of the spectrometer measured in an off-line x-ray laboratory setting was revised. The error analysis was expanded to include the accuracy of the off-line measurements, the effect of the neutron-induced background, as well as the influence of possible errors in alignment of the instrument to the ICF target. We demonstrate how the improved methodology is applied in the analysis of ConSpec data with examples of a relatively low-neutron-yield implosion using a tritium–hydrogen–deuterium mix as a fuel and a high-yield deuterium–tritium (DT) implosion producing high level of the background. In both cases, the shape of the measured spectrum agrees with the exponentially decaying spectral shape of bremsstrahlung emission to within ±10%. In the case of the high-yield DT experiment, non-monotonic deviations slightly exceeding the measurement uncertainties are observed and discussed.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3